

Impacts of Spectral Shifts on Retrievals

Evan Manning

California Institute of Technology

Jet Propulsion Laboratory

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Summary

- There is a trend in spectral shift of AIRS channels.
 - 0.63 parts per million in frequency per year (ppmf/year)
- The trend in spectral shifts contributes to the observed trend in retrievals but is not the major cause.
- The impact of this spectral trend will be curtailed in v6, increasing the value of AIRS Level-2 and Level-3 products for climate studies.

Variability of Spectral Shifts

- See Denis Elliott's presentation
- Secular trend of ~0.63 parts per million in frequency (ppmf)
 - Important for climate applications
- Orbital cycle of ~3 ppmf peak-to-peak
 - Peaks are at North & South Poles
 - Important for polar studies comparing poles
 - Effect will be small in tropical and mid-latitude regions
- Seasonal cycle of ~2 ppmf peak-to-peak
 - May eventually be important in studying seasonal climate effects
 - Much smaller than true seasonal signal and systematic seasonal unknowns

Tests of Impact of Spectral Shifts on L2 Products

- Results of "black box" tests on AIRS v5 IR-Only Level 2 PGE
 - Alter the radiances to simulate the effect of uncompensated shifts in instrument frequencies.
 - Compare the resulting Level-2 products to those produced with nominal radiances.
 - Two shifted test sets:
 - Focus 3 (2002-09-06) granule 50 (night, ocean, tropical)
 - Simulated set from Hannon (49 clear global climatological profiles at 5 scan angles)

Caveats for Tests

- The frequency set is shifted by a simple +/- 5 ppmf (parts per million in frequency).
- Shifting is done by a cubic spline, per module in radiance space.
 - Tests should be repeated using simulated data from Strow and Hannon generated with a shifted forward model.
- The simulated data used is cloud-free and noise-free.
 - Checks with real data show similar results for clear and cloudy cases
- A rough preliminary channel filling algorithm used in the test with real data.
- L2 retrieval is IR-Only.
 - Trends are similar for IR-Only and IR-MW retrievals

Comparing Clear Tropical Cases, Simulated & Focus 3 Granule 50

- Trends are predicted from differences between AIRS v5 L2 products from radiances with and without shifting.
 - Scaled to trend units assuming 0.63 ppmf/year
- Results from the two tests agree very well.
- There's no overall bias.
- The largest peaks are ~55 mK/year at 35, 65, and 135 mbar.
- The observed shifts are smaller than the ~100 mK/year reported by Divakarla and Hearty, especially in the troposphere.

AIRS Science Team: 17-April-2008

Impact of Modeled Spectral Shifts on Other Retrieved Parameters

From 2002-09-06 (cloudy nighttime) granule 50:

- TSurfStd: +4.5 mK/ppmf; +3 mK/year
- TSurfAir: -100 mK/ppmf; -68 mK/year
 - Much larger than change in TSurfStd
 - Opposite sign to TSurfStd
- totH2OStd: -0.27 %/ppmf; -0.17 %/year
- CldFrcStd: -0.5 %/ppmf; -0.3 %/yr

Comparing to Trends in Real v5.0 Data

 "Trends" in 100-layer profiles were calculated from IR/MW retrievals on the first 16 days of March, June, Sept, and December of 2002/3-2007/8

Comparing to Trends in Real v5.0 Data

- The spectral shift accurately predicts the shape of the observed trend in the 10-100 mbar region
- The tropospheric shape and bias are something else:
 - True trend
 - Climatology
 - 5-year El Nino timing
 - -CO₂

AIRS Science Team: 17-April-2008

Tropical Trends in v5.0 Data Compared to Susskind

- The heavy blue lines match!
- Based on different subsets of same v5 data

V6 Approach to Reducing the Impact of Spectral Shifts

- Level-1B will accurately determine the instantaneous spectral shift
 - See talk by Denis Elliott
- Strow and Hannon will produce and Level-2 will use a radiance model which compensates for these shifts.
 - This should eliminate all spectral shift effects in all physical retrieval steps.
- The regression steps need further study. Some possibilities:
 - Reduce the use of regressions in the retrieval.
 - Adjust the radiance data to the static frequency set (i.e. apply the Level-1C algorithm) before passing the data to regressions.
 - Train the regressions on a data set that represents the full range of shifts to be encountered
 - Remove the channels with the most impact from spectral shifting from the regression input set.

Summary

- There is a trend in spectral shift of AIRS channels.
 - 0.63 parts per million in frequency per year (ppmf/year)
- The trend in spectral shifts contributes to the observed trend in retrievals but is not the major cause.
- The impact of this spectral trend will be curtailed in v6, increasing the value of AIRS Level-2 and Level-3 products for climate studies.

Backup Materials

- Background figures of observed trend in AIRS Level-2 products
- Per-module analysis of the effect of spectral shifting
- The effect of spectral shifts on regression PC scores

From Divakarla -- Apparent Trend in AIRS v4 vs. Radiosonde

- Divakarla et al 2006
- AIRS version 4
- Apparently correlated with CO₂
- AIRS version 5 added changing CO₂ background in physical retrieval, but trends persist

Figure 14. Seasonal trends between AIRS retrieval bias 150 hPa to surface and CMDL MBL CO₂, 90°N-90°S. Average differences between RAOB and AIRS temperatures are indicated by solid circles, smoothed differences using a 2-month sliding boxcar average are indicated by the lashed line, and zonally weighted linear least squares fit for he CMDL MBL product are indicated by the solid line.

From Hearty - Trend in V5 Global Temperature

- Upward trend in temperature bias vs. ECMWF
- Downward trend in outliers

Much more in Hearty presentation in http://airs.jpl.nasa.gov/Science/ResearcherResources/MeetingArchives/TeamMeeting20070327/

There is a Seasonal Cycle + Drift in Frequency

Strow & Hannon

The variation of the SRF centroid with season and latitude. The seasonal variation has a p-p amplitude of about 3 ppmf. The trend in the SRF centroid between 2002 and 2007 has been - 0.63 ppmf/year. Superimposed on this trend is a combination of orbital and seasonal variability. The orbital variability shows up as a change of the SRF centroid with latitude. Note the peaks in December of every year.

Aumann

Could These Be Related?

- Ratio of size of cycle to secular term is similar
- Timing of peaks is different
 - March & September for retrieval differences
 - December & August for spectral shifts

Temperature Profile Impacts per Module

- Strongest impacts are in longwave M12, M11, M10, all above 100 mbar
- M3 & M4 become important in the boundary layer

AIRS Science Team: 17-April-2008

Impact of Spectral Shifts on Other Retrieved Parameters by Module

- TSurfStd: -4.5 mK/ppmf; -/+3 mK/year
 - M4d (1217-1272 cm-1), M3 (1338-1443 cm-1) are biggest contributors
- TSurfAir: +100 mK/ppmf; +/-68 mK/year
 - M4b (1460-1527 cm-1), M3 (1338-1443 cm-1) are biggest contributors
 - Much larger than change in TSurfStd
 - Opposite sign to TSurfStd
- totH2OStd: +0.27 %/ppmf; +/-0.17 %/year
 - M3 (1338-1443 cm-1), M4c (1284-1338 cm-1), M4d (1217-1272 cm-1) are biggest contributors

Regression Scores vs. Simulated Spectral Shift

- Maroon: Cloudy regression PC score from real 2002-09-06 granule
 50
 - Best score at zero shift
- Red: Clear and Cloudy PC scores from simulated clear data
 - Best score at a shift of +3ppmf
- Black: Clear PC score from real 2002-09-06 granule 50
 - Best score at 1 ppmf shift
 - Not a perfect parabola
 - Steeper

Discussion of PC Scores

- Shallow parabolas are best. They indicate that little damage is done to retrievals by feeding in data shifted differently from the training set.
- Shift of minimum may indicate a difference between test data and mean of training set of ~3 ppmf:
 - 3 ppmf ~= 5 years of secular trend
 - 3 ppmf ~= seasonal peak-to-peak variation
 - 3 ppmf ~= 1/2 of day-night peak-to-peak variation
 - Real data used is a tropical night granule
- The compound shape of the curve for clear PC score on real data may be combination of one parabola centered on 3 ppmf from training effect plus another centered on 0 shift from a filling effect. Shifting by cubic splines is sensitive to values in neighboring channels, and bad channels in real data must be filled before spline interpolation.
- Or maybe multiple parabolas from disjoint training subsets?